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Abstract 

Background: Computational exposure science represents a frontier of environmental science 

that is emerging and quickly evolving. 

Objectives: In this commentary, we define this burgeoning discipline, describe a framework for 

implementation, and review some key ongoing research elements that are advancing the science 

with respect to exposure to chemicals in consumer products. 

Discussion: The fundamental elements of computational exposure science include the 

development of reliable, computationally efficient predictive exposure models; identification, 

acquisition, and application of data to support and evaluate these models; and generation of 

improved methods for extrapolating across chemicals. We describe our efforts in each of these 

areas and provide examples that demonstrate both progress and potential. 

Conclusions: Computational exposure science, linked with comparable efforts in toxicology, is 

ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical 

safety and sustainability and to protect public health.  
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Introduction 

Traditional, hazard-driven, single-chemical risk assessment practices that follow the 1983 

National Research Council (NRC) paradigm (NRC 1983) cannot keep pace with the vast and 

growing numbers of chemicals in commerce (Harvey et al. 1995; Whittenberger et al. 1984). A 

well-defined, quantitative, and defensible means of identifying those with the greatest risk 

potential is needed (Judson et al. 2009; NRC 2007b, NRC 2009; Van Leeuwen et al. 2007), with 

exposure considerations providing a critical context for allocation of limited resources (Cohen 

Hubal 2009; Dellarco et al. 2010; Egeghy et al. 2011; Sheldon and Cohen Hubal 2009). 

Elevating the role of exposure science, however, will require development and application of 

efficient and reliable computational models that make full use of the rich and growing sources of 

accessible exposure-relevant information (NRC 2012). We propose a new discipline, called 

“computational exposure science,” that expands the knowledge and current methods used in the 

field of exposure assessment by bringing in novel data sources and new computational 

technologies. 

A key driver of computational exposure science is the reinvigoration of interest in the significant 

role that the environment plays in disease etiology that has accompanied the conceptualization of 

the “exposome” (Prüss-Üstün and Corvalán 2006; Rappaport and Smith 2010; Wild 2005). The 

exposome refers to the totality of an individual’s environmental exposures from conception 

onwards. Integrating external agents, internal response, and the social, cultural, and ecological 

contexts of exposure, it was conceived to complement the genome for investigation of disease 

etiology (Wild, 2012). The rise in increasingly prevalent diseases, such as autism, asthma, and 

childhood leukemia, (Hertz-Picciotto and Delwiche 2009; Meeker 2012; Perrin et al. 2007) 

against a backdrop of widespread human exposure to industrial chemicals, as revealed by 
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biomonitoring surveys, (Becker et al. 2007; Centers for Disease Control and Prevention 2009; 

Park et al. 2012) confers a societal obligation to more comprehensively understand exposures. 

Traditional strategies for evaluating chemical exposures have left us without even the most basic 

information on exposures for the vast majority of chemicals in commerce (Egeghy et al. 2012; 

Muir and Howard 2006; Schwarzman and Wilson 2009), but a new era of systems thinking 

promises to transform exposure science. 

Exposure science is responding to advances in technology (Cohen Hubal 2009). Rapid 

improvements in computing hardware and software have led to the emergence of efficient 

computational approaches to collect data, simulate complex processes, and systematically 

evaluate models. Simultaneously, diverse and “big” data are becoming increasingly available. 

New social-media-based methods of obtaining perception and behavior information are being 

developed (Eysenbach 2009), and further development of low-cost sensors soon will empower 

“citizen scientists” to provide a greater range of data, including chemical concentrations, using 

omnipresent technologies, such as smartphones (Dickinson et al. 2010; Snyder et al. 2013). 

These public health drivers and novel scientific and technological advances are facilitating the 

development of computational exposure science as an emerging dimension of exposure science, 

akin to the emergence of computational toxicology over a decade earlier (el-Masri et al. 2002; 

Kavlock and Dix 2010). With various representations of computational exposure science 

beginning to appear in the published literature (Dionisio et al. 2015; Isaacs et al. 2014; Shin et al. 

2015; Wambaugh et al. 2013), this commentary is intended to define the emerging discipline, 

establish a conceptual framework, and provide some illustrative examples of research being 

conducted to advance the field of exposure assessment using chemical ingredients of consumer 

products as an example. 
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Discussion 

Defining Computational Exposure Science 

We define computational exposure science as the integration of advances in chemistry, computer 

sciences, mathematics, statistics, and social and behavioral sciences with new and efficient 

models and data collection methods to reliably and effectively forecast real-world exposures to 

natural and anthropogenic chemicals in the environment. Computational exposure science aims 

to link exposures to health outcomes through the application of environmental informatics and 

advanced computational tools, as previously envisioned (Cohen Hubal 2009; Cohen Hubal et al. 

2010; Sheldon and Cohen Hubal 2009), and to take full advantage of scientific innovation and 

the resulting abundance of newly available information for predictive, rapid, and high-

throughput exposure assessment. 

Although computational exposure science is conceptualized in the spirit of computational 

biology, it builds on a rich history of computational models for understanding environmental 

science that dates to the early 1900s (NRC 2007a). For key environmental chemicals, decades of 

observational studies have enabled the evolution of empirical and mechanistic models that 

reliably can explain the distribution and fate of chemicals in biological and environmental media. 

(Tornero-Velez et al. 2012; Zartarian et al. 2012). Multimedia fate models have greatly expanded 

modeling capacity to large inventories of chemicals. These models predict human exposure using 

mechanistic mass balance equations and food web bioaccumulation calculations to describe 

transfer between environmental compartments (e.g., air, water, soil, biota) (Arnot et al. 2012; 

Bennett et al. 2002; Diamond et al. 1994), but require few inputs other than easily obtainable 

physical/chemical descriptors. In the era of big data and informatics, analytical solutions are 
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giving way to more numerical, computational, and systems-focused methods. Nonetheless, a 

computational exposure science approach is not a replacement for more traditional monitoring, 

survey, and modeling methods used in exposure science. While computational exposure science 

provides the opportunity to investigate a more expansive range of chemicals, it also carries much 

greater levels of uncertainty. Risk context (NRC 2009) should determine whether rapid or highly 

refined approaches are employed. Moreover, the two approaches complement each other, as the 

screening-level results of the predictive models can identify targets for measurement, and the 

acquisition of new data through measurements and field studies is needed to evaluate and 

improve computational exposure science methods (NRC 2007b). 

Applying Computational Exposure Science 

Our ambitious goal for computational exposure science at the U.S. Environmental Protection 

Agency (EPA) is to rapidly and defensibly predict screening-level population exposure and 

intake dose rates for any existing or new chemical, even if little data exist beyond chemical 

structure. As depicted in Figure 1, understanding exposure to any chemical requires linkages 

from chemical functional role; to formulated component of consumer products; to identification 

of scenarios involving chemical release, media concentrations, and human contact; and, 

ultimately, to models estimating uptake and dose. The functional role of a chemical (i.e., how it 

is used in processes or products) is determined by its inherent chemical properties, which are 

imparted by chemical structure. 

Predicting exposure and dose from chemical structure requires viable approaches for integrating 

information on the function of a chemical both with mechanistic fate and transport processes and 

with social and behavioral science descriptions of consumer product use and activities. Two 
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distinct realms of information, or “source data,” that are critical for estimating exposure are 

illustrated in Figure 1. These realms represent (1) inherent chemical, physical, and molecular 

properties and (2) decisions and other behaviors that govern product use. The individual 

components are arranged to visually indicate whether the data streams characterizing each 

component are mainly in the domain of “inherent chemical properties” or “human decisions and 

behavior” (beyond traditional exposure factors). As examples, media concentrations can be 

predicted using a multimedia mass balance model and a chemical release factor, both of which 

can be parameterized using the inherent properties of the chemical (Arnot et al., 2012). Product 

purchase and use, however, are the result of complex individual-level decisions that drive overall 

consumer behaviors in a stochastic fashion (Rand and Rust, 2011). The position of the 

“exposure” component reflects that the process is dependent as much on inherent properties as it 

is on complex social, psychological, and economic drivers. 

The system of linkages depicted in Figure 1 may not seem like a radical departure from the 

traditional, linear source-to-dose continuum (Lioy 1990), nor is it intended as one. Instead, it 

expands on the modification proposed in the NRC Exposure Science in the 21st Century report 

(Lioy and Smith 2013; NRC 2012). Specifically, it expands the “upstream” factors of exposure 

to formulation science (i.e., functional role, product formulation) and to behavior informatics 

(i.e., product purchase, product use) and identifies the types of data streams required to 

parameterize each component. This addition of upstream processes provides a natural 

mechanism by which the product manufacturing stage of life cycle (i.e., product formulation) can 

be linked more directly to human behavior. 

Application of computational exposure science to characterize each process in Figure 1 for 

thousands of chemicals will require one or more of the following generalizable activities: 
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• identify and acquire multiple data streams from traditional and nontraditional sources; 

• extrapolate model input parameters from data-rich to data-limited chemicals; 

• integrate multiple data streams for large sets of chemicals through rapid, efficient, and reliable 

models; 

• evaluate model performance by systematically comparing model predictions with measured 

values obtained through targeted or non-targeted analyses and applying quantitative model 

sensitivity and uncertainty analyses to identify key data limitations and sources of uncertainty; 

and 

• continuously acquire and incorporate new data streams that address key uncertainties and 

perform such refinements in an iterative and self-consistent manner. 

An immediate challenge with computational exposure science is in identifying and integrating 

those data streams, particularly those outside of the traditional realm of exposure science, that are 

essential for understanding, parameterizing, and evaluating interactions between (chemical) 

stressors and (human) receptors. For example, commercial market research data and Internet 

search volume analytics remain largely unexploited for understanding consumer behaviors and 

their differences by region and demographics. Novel analytical tools (e.g., social network 

analysis, natural language processing) must be explored to facilitate the integration of 

nontraditional data streams into exposure assessment, just as ontologies are being developed to 

integrate exposure information with other disciplines (Goldsmith 2012; Mattingly et al. 2012). 

To parameterize the processes in Figure 1 for the vast number of data-limited chemicals in 

commerce, it is necessary to extrapolate chemical-behavior patterns (fate, transport, intake, etc.) 

from relatively data-rich chemicals (often using quantitative structure-activity and relationship 

[QSAR] methodologies), with the explicit understanding that such extrapolation is fraught with 
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uncertainty and demands empirical evaluation (Molitor et al. 2007; Oreskes 1998; Wambaugh et 

al. 2013).  

Innovative modeling approaches are needed to understand relationships among data sources of 

varying complexity and quality and exposure-related factors, processes, and monitoring data. 

These include machine-learning classification models, which already have proved well-suited for 

pharmacokinetic and hazard-related contexts (Freitas et al. 2015; Liu et al. 2015; Zang et al. 

2013), and agent-based models, which provide a new opportunity to predict exposure-relevant 

behavior as a function of characteristics of individuals, their environments, and their interactions 

(Luke and Stamatakis 2012).  

A clear understanding of domain of applicability (i.e., the set of conditions under which use of 

the model is scientifically defensible) is critical for reliable application of models, as is 

appropriately quantifying the precision of mathematical models, evaluating their predictive 

value, and characterizing associated uncertainties. Care must be taken to ensure that the models 

truly reflect their assumed underlying theoretical constructs, particularly when relying on big 

data (Lazer et al. 2014; Oreskes 1998). Conventional evaluations of model predictions against 

available personal measurement data, along with advances in computational implementations of 

statistical methods for model and data evaluation (Markov Chain Monte Carlo sampling for 

Bayesian inference, in particular), provide a path forward for such evaluation (Molitor et al. 

2007; Wambaugh et al. 2013; Zartarian et al. 2012). The results of such evaluation will guide the 

acquisition and incorporation of additional data to address key uncertainties and further refine 

models (NRC, 2007a). 
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Current Research Activities and Examples 

The application of computational exposure science as described above has led to a set of 

strategic research efforts by U.S. EPA to advance high-throughput exposure predictions. We 

provide examples below describing development and application of methods for assessing 

exposure to consumer product chemicals pertaining to (1) development of reliable, 

computationally efficient predictive models; (2) identification, acquisition, and analysis of data 

supporting high-throughput exposure model parameterization and model evaluation; and 

(3) extrapolation of available data to predict behaviors of large inventories of data-limited 

chemicals. 

For proof of concept, our current focus has been on assessing exposures to chemical ingredients 

of consumer products under the construct that exposure to a chemical is a function of the type of 

product in which the chemical can be found and human activity patterns related to that product. 

The general strategy has been to identify products, map products to chemical ingredients, map 

products to use patterns and exposure scenarios, and then employ scenarios to model chemical 

exposures by route and pathway. 

To supplement the National Library of Medicine’s Household Products Database (NLM, 2015) 

for information on product ingredients, U.S. EPA has built the Consumer Product Chemical 

Profiles database (CPCPdb) (Goldsmith et al. 2014). Using optical character recognition and 

automated parsing to extract information from publicly available product material safety data 

sheets, CPCPdb has been populated with roughly 1800 unique chemicals in 353 product 

categories. EPA also has developed a database (Chemical Product Categorization database 

[CPCat]) of various levels of chemical use information for more than 40,000 chemicals (Dionisio 
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et al. 2015). CPCPdb has been consolidated into CPCat, and both databases are available through 

EPA’s online warehouse of chemical data known as the Aggregated Computational Toxicology 

Resource (ACToR) (EPA, 2015). Use-related data within ACToR already have been shown to 

correlate with exposures inferred from biomonitoring (Wambaugh et al. 2014), and these 

databases provide a footing for the development of modeling systems to predict chemical 

functional use (based on properties), and then, from functional use, the types of products in 

which chemicals are likely to be found (“use profiles”). 

As QSARs are used to extrapolate physicochemical and pharmacokinetic properties across 

chemicals, similar models are being developed to determine relationships between predicted 

properties or structural descriptors and chemical functional role in products and to 

probabilistically predict weight fractions by functional role in consumer products for large lists 

of chemicals. Such analyses may eventually aid in identification of the underlying inherent 

chemical properties (molecule features) that confer the desired properties. As such, these 

computational exposure modeling methods can be repurposed to design safer ingredients or 

identify safer, readily available alternatives. 

For the purposes of high-throughput exposure assessment, U.S. EPA has developed a new 

modeling approach, the Stochastic Human Exposure and Dose-Simulation-High-Throughput 

(SHEDS-HT) model (Isaacs et al. 2014), that combines use profiles with consumption 

information and then maps these factors to exposure scenarios. SHEDS-HT is based on the 

methods and algorithms of the SHEDS model for multimedia pollutants, commonly known as 

SHEDS Multimedia (Zartarian et al. 2012), but the fugacity, residential, and dietary modules 

have been reduced numerically and operationally to decrease user burden and increase run speed 

while maintaining critical features. A fugacity-based source-to-concentration module estimates 
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indoor concentrations by media (air, dust, and surfaces). Concentration estimates, along with 

relevant exposure factors and human activity data, then are used by the model to rapidly generate 

population-specific distributions of potential residential exposures via dermal, nondietary 

ingestion, and inhalation pathways. Estimated population dietary exposures are combined with 

the residential exposure predictions to produce total exposure estimates. 

The development of SHEDS-HT, together with informatics-based methods of obtaining chemical 

use information, led to a significant increase in the speed of probabilistic exposure assessment 

and in the numbers of chemicals assessed. For example, the premier, higher-tier SHEDS 

Multimedia (SHEDS-MM) model had been applied to fewer than 10 chemicals over the past 15 

years in support of high-priority regulatory support activities (Figure 2). In contrast, the first 

generation of SHEDS-HT extended the number to 15 by use of less detailed inputs and 

appropriate measurement surrogates. The addition of the simplified dietary module 1 year later 

increased the number to 330, and subsequent enhancement with information from consumer 

product ingredient databases brought the number of chemicals assessed to 2500  (Isaacs et al. 

2014). We anticipate that current efforts toward the development of structure-to-function 

relationships will produce an accelerated rate of model parameterization that will enable 

screening-level forecasts for at least 10,000 chemicals by 2016 and perhaps twice that number in 

only 2 years later. 

To assess new models such as SHEDS-HT and foster confidence for application in regulatory 

settings, we are developing techniques for evaluation of model predictions that are both 

systematic (e.g., to measure performance across a broad range of chemical stressors) and 

empirical (e.g., to determine how reliably available data support model estimates). We have 

relied on a well-defined framework using a Bayesian statistical methodology to draw inferences 



Environ Health Perspect DOI: 10.1289/ehp.1509748 
Advance Publication: Not Copyedited 

 14 
 

from biomonitoring data for evaluating model predictions. This framework, called Systematic 

Empirical Evaluation of Models (Wambaugh et al. 2013, Wambaugh et al. 2014), provides 

(1) consensus exposure forecasts from multiple models and (2) an empirical determination of 

uncertainty in the resulting model predictions. This framework is a direct example of how 

traditional biomonitoring and exposure data can be used in concert with (perhaps less certain) 

computational exposure science modeling results. 

Conclusions 

The emerging discipline of computational exposure science represents an evolution of exposure 

science toward the identification of new data sources and application of innovative modeling 

techniques for understanding and quantifying human exposures to chemicals. The success of 

computational exposure science as a discipline will require that we also design and implement 

new research to collect the critical monitoring data needed to evaluate and improve the reliability 

of the next generation of models and to reduce the uncertainty in chemical exposure model 

predictions for screening and prioritization purposes and other applications (e.g., ecological 

impact analysis, life cycle analysis, broader sustainability evaluations). The non-targeted analysis 

of chemicals present in biological and environmental media performed using high-resolution 

mass spectrometry platforms will play a key role. The wealth of data produced by non-targeted 

measurement techniques can be used to generate and test hypotheses regarding the fate of 

chemicals as a function of, for example, their physical-chemical properties, use (applicative or 

functional), and source distance (near-field [applied to body or released indoors] versus far-field 

[released to outdoor environment]) but will require the innovative data analysis methods beyond 

those described herein. Results from both non-targeted analysis and computational models will 

be used to optimize future exposure data collection efforts. The symbiotic relationship between 
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methods, measurements, and modeling traditionally realized in exposure science is no less 

relevant within computational exposure science, but takes on a systems-focused and high-

throughput form. 

Although the examples provided here focus on EPA research, it should be acknowledged that 

other groups also are engaged in advancing computational exposure science. For example, the 

National Institutes of Health-funded Health and Exposome Research Center: Understanding 

Lifetime Exposures (HERCULES) (Hercules Exposome Research Center, 2015) and European 

Union-funded Health and Environment-wide Associations based on Large population Surveys 

(HEALS) (HEALS Consortium, 2015) projects each are bringing together novel technologies, 

data analysis techniques, and modeling tools to support exposome studies. Whereas our 

examples emphasize human exposure to consumer product chemicals, computational exposure 

science methods are also amenable for broader application, and similar approaches already are 

being evaluated for ecological receptors. As technology is rapidly evolving; the potential 

application of these methods will expand and the promise of minimizing significant adverse 

impacts of chemicals on human health becomes more attainable. 

A critical mass of research around the themes of exposure modeling, statistics, and novel data 

streams is affirming computational exposure science as sufficiently distinct and mature to 

warrant description within the scientific literature. The emergence of computational exposure 

science has been motivated by both need and opportunity, in parallel with the earlier emergence 

of computational toxicology from toxicology. The availability of toxicity testing data for 

thousands of chemicals highlights the need for an exposure context to gauge risk and inform 

regulation (NRC 2007b; Thomas et al. 2013; Tice et al. 2013) and for exposure assessment to not 

be the rate-limiting step for high-throughput risk assessment. By identifying and defining this 
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new and rapidly emerging dimension of exposure science, we hope to foster its continued 

development in support of protection of health and the environment.  
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Figure Legends 

Figure 1. Framework for Computational Exposure Science. The rounded rectangles represent 

components of computational exposure science required for high-throughput exposure 

assessment; their relative positions toward the left or the right represent the two generalized 

categories of source data (inherent chemical properties and human decisions, respectively). 

Figure 2. The number of chemicals for which probabilistic exposure assessment has been 

performed has increased drastically over the past two years. Current efforts toward development 

of generic product formations and structure-to-function property-activity relationships will 

produce accelerated rates of evaluation. 
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Figure 1. 
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Figure 2. 
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